Rationalize the Denominator 3/(6- square root of 2)${\displaystyle \frac{3}{6-\sqrt{2}}}$
的有关信息介绍如下:Multiply${\displaystyle \frac{3}{6-\sqrt{2}}}$ by ${\displaystyle \frac{6+\sqrt{2}}{6+\sqrt{2}}}$.
${\displaystyle \frac{3}{6-\sqrt{2}}\cdot \frac{6+\sqrt{2}}{6+\sqrt{2}}}$
Multiply${\displaystyle \frac{3}{6-\sqrt{2}}}$ and ${\displaystyle \frac{6+\sqrt{2}}{6+\sqrt{2}}}$.
${\displaystyle \frac{3(6+\sqrt{2})}{(6-\sqrt{2})(6+\sqrt{2})}}$
Expand the denominator using the FOIL method.
${\displaystyle \frac{3(6+\sqrt{2})}{36+6\sqrt{2}-6\sqrt{2}-{\sqrt{2}}^{2}}}$
Simplify.
${\displaystyle \frac{3(6+\sqrt{2})}{34}}$
The result can be shown in multiple forms.
Exact Form:
${\displaystyle \frac{3(6+\sqrt{2})}{34}}$
Decimal Form:
${\displaystyle 0.65419531\dots }$